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NASA TT F-10,377

APPROXIMATE METHOD FOR THE DETERMINATION OF THE NATURAL
OSCILTATION FREQUENCIES OF CYLINDRICAL, CONIC AND
TOROIDAL SHELLS

I. I. Meyerovich

ABSTRACT

Development of a method for the approximate determina-
tion of the flexural vibrations of shells of revolution, where
the vibrations involve the appearance of nodal lines along
the generatrix and in the meridional directions. The method
is based on the use of a Ritz-type strain-energy approach and
the selection of the approximating functions such that--besides
the boundary conditions--they satisfy the additional conditions
of the absence of fluctuations of circumferential strains and
stresses and the abseunce of shear in the middle surface. A
detailed analysis is given of the frequency spectrum of a cylin-
drical shell with arbitrary boundary conditions and of the com-
bined oscillations of two cylindrical shells of different rig-
idity. These, and the results obtained for a closed thin-
walled toroidsl shell suspended in free space, are compared
with the experiment.

Introduction

The present work considers the flexural oscillations of shells of revo-[lhB*
lution which exhibit nodal lines in meridional directions and along the gen-
eratrix.

A series of Soviet works have been devoted to the investigation of this
class of oscillations -- the works of Breslavskiy, ref. 3, Iilippuv, ref. T,
-- and also works conducted abroad and Arnold Warburton, ref. 4, which per-
tain primerily to cylindrical shells and to conic shells with small conicity.

We assume that no limitations are imposed on the displacement along
the normals to the middle surface w, along the tangents to the circular cross

*Numbers given in margin indicate pagination in original foreign text.



NASA TT F-10,377

sections v and along the shell u. We then obtain a characteristic equation of
the third order for computing the square of the frequency of natural oscilla-
tions associated with a cylindrical shell which has a hinge support and a fixed

number of waves: p6 - Lgph + Llp2 - Lb = 0. The roots of this equation differ
radically from each other.

The following expressions:zare used as approximation equations for determin-
ing the square of the lowest frequency

“2_n££_ : (3)
p—Ll y

o Loy Libo

P=(1 5), ()

which agree well with experimental results, if the number of waves in the cir-
cumferential direction is n = L.

If we neglect the coupling between the forms of cscillations containing a
different number of waves in the longitudinal direction, these equations may also
be utilized for other boundary conditions.

From the analysis of the amplitude of oscillations it follows that the low-
est frequency is determined primarily by the flexural oscillations w, and the
second by longitudinal displacements u, whereas the third is determined by shear
oscillations v.

For a single shell Flyugge (reference €) presents the following frequency
values

pl = 18.36 Hz, p2 = 918 Hz, p3 = 1’453 Hz.

The ratios of amplitudes are as follows:

for P, Wi u'v l: -0.25: -0.0k,
1l: 0.076: 0.0526,

1: -0.1L46: 0.245.

for peu: v: W

for p.v: u: w

3

Since, in practice, in order to compute pl it is not necessary to know Py
and p3, we can impose specific relationships on u, v and w, and place of the
cubic equation for p2 we can consider an equation of the form A;p+A4,=0.

We solve this problem by using the Ritz energy method, selecting the approxe-
imation functions in such a way that in addition to boundayy conditions they ‘
satisfy auxiliary conditions stipulating that there is an absence of
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oscillations producing elonzations in the ring direction and an absence of
shear in the middle surface.

In order to convince ourselves that the selected hypotheses are expedient
and that it is possible to apply them to a more complex conical or toroidal con-
figuration involving shells with various boundary conditions, we carried out a
detailed analysis in the first part of the work pertaining to the frequency
spectrum of cylindrical shells with arbitary boundary conditions. We also con-
sidered the combined oscillations of two cylindrical shells of different rigidity.

In the second part we considered the oscillations of a conical shell hinged
along the edges.

The theoretical results have been verified experimentally.

We note that there are no approximate equations available for computing the
natural oscillations of conical shells.

In the third part we considered the oscillations of a closed, thin-walled
toroidal shell in free space. An exact solution of this problem has not been
obtained to date. There are also no data on the experimental investigations of
such shells.

I. Cylindrical Shells
1. Basic Propositions

In order to analyze the spectrum of frequencies associated with the natural
osciallations of the shell, we designate the displacements normal to the coordi-
nate line x = const, lying on the middle surface, by w, the displacements tan-
gential to the circular sections by v and the longitudinsl displacements by u
(figure la).

Furthermore, by introducing a curvilinear system of coordinates x, 6, we
assume that u, v and w may be expressed as a sum of the products of two functions,
of which one depends on x and the other on 6. The number of waves in the cir-
cumferential direction for a closed shell must be even and can be represented as
a function of cos n6 or sin n@.

We write the displacements in the following form

x =22 ApaW m (x) cOs 1,

v v=22 B,V x (x)sin nb, (1.1)
u=zz CunlUn (x)cos 18,
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The strain parameters of the cylindrical shell are determined by /150
the following expressions

ou ov w ou
E—-——’ B e— e — ~_ —
> ““ra R’ T +R00 (1.2)
2w 1 (Pw |, v dfow | v\ |
Ry == —— = e [ e —— _-—- —
1= 1 m(ao2+ae)’ = (Rao+R)'

We assume that the shell is not extended in the transverse direction and
that there is no shear in the middle-.surface, i.e., c2 =w=0

Figure 1. a, Cylindrical shell; b, conical
shell; c, toroidal s'ell.

Then it is obylously possible to have a relationship befween the functions w, v
and u. Specifically, for each fixed n the following equalities must be satisfied

anvu (*)n— Annwm (%) =0s. :
e Un®) (1.3)
B, . Va(x)—Cq e 0.} .

For any value of x we obtain the following from equality (1.3.)

BypVu(x)= ..(x)

CaiUnm (x)a—”u V..(x)l=‘-4-'ﬁ5-i¥’.’.(x)Ra



Substituting (1.4) into (1.1) and (1.2), we f£ind an expression for displace-
ments and deformations

: 'w=22AmW,,,(x)cosn6 |
1,_._22 Amn‘ﬁ"r;(—xlsinne, | (1.5)

’

' W (%)
u=22 Ann p Rcos nt
Amn "
e,=22 — W m(x) R cos nb, ]
. e=0=0,

'n,=22 Ap, W m(x)-cos n,

12=22%"—W,,,(x)(1—n2)cosn9, (1.6)

= Amn W' ()1
"—-22 R W m(x) - sin n6.

We determine the natural frequencies in the form of the shell oscil- [ 151
lations with the Ritz method. For the approximation function Wm(x) we select

the natural function of oscillations of an elementary beam element cut out
along the generatrix. Wm satisfies the equation

and

asw '
from which it follows that

W o (:)=C, ch ko x-+Cysh kuX+Cyc08 kyi4C,sin kx. (1.7)

To compute the parameters Amn and the natural frequency of the shell we
use the following system of equations

22(37-7“”' ) =" (1.8)

where P is the potential energy ¢f the shell;

Ao

T is the kinetic energy of the shell which undergoes oscillations with
a fregquency p.
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Under the adopted assumption.

! 2= ! 3
Eh
P=1—w§§éme'+ma mj [+ 2pnyx 42X
X(l "P)’"]Rdxdﬂ, (1.9)
12

T=oh § oj [#% 492 +u2] Rdxds,

Differentiating (1.8) and (1.9) with respect to A &nd substituting into
(1.7), we obtain the follcwing system of equetions for each fixed value of n

Al\'l(a}: - p2b}:) + Aﬁn (a'l’: - p’b;f,') + see + Aun (atl:n - p’b}:n)=0,
Awn(@ia— P010)+ Ay, (@h— PB3) + . . . A (@2 — p2B2) =0,

.......... .. (1.10)
A,_(a',':,"—p?b )+ Ay (a3 — P05+ .. o+ Ay (Gmn— £2an)=0.
The coefficient Amn and Ai: after intergration over ¢ will be [152
! 2 /] .
» z P
Eim R S%R’dx+-’l-‘§- f w2+
0 (1.11)
TR FERUNPRE= TV
r20-n2 SN gy
' :
ath=—E xR § L (1 —m)(WW,+
12(1—p2) [m (1.12)
. —_nt WV,
Fww t20-wisE Tale g
i \
b —mhnxf[ 2(1 ;2) Wi ]dx
(1.13)
]
b= rohR [Z=Te 4y,
]




In deriving ejuations (1.12) and (1.13) we took intc account the orthogo-
nality of the beam functions, i.e.,

! 1
‘JW,,,(x)Wp(x)dx=0, i (1.1)

4
“jw,',,(x) W (x) da=0. ]

Having considered the general method of soiving the problem of determining
the natural oscillations of the shell, we proceed with the consideration of
specific cases,

2. A Hinge-supported Shell

A large number of theoretical and experimental works have been devoted to
the investigation of oscillations of a shell of this type. Therefore, we shall
begin our investigations with this case, which is most simple from the stand-
point of the theoretical solution.

Indeed, if the shell is hinged at the ends (x = O and x = 1), the flexure
at these points becomes equal to zero and the flexural moment of the shell and
the beam function will be

Wm (X)= sin TTR‘E '

m=1, 2, 3... (2.1)

It follows from (1.1L4) that in equation (1.10) all of the supplementary
coefficients become equal to zero; for each value of m we obtain the following

equation for computing pzm [152

anm
Pu=
6nu|

(2.2)

vhich can be expanded in the form _
— " |
ittt (a1 20 - 1)+ 01— £

.;p2= E
" (—w)eRe i+ + B .
where . " } . (2.3)
bd=ms. b=pm T

In order to convince ourselves that the adopted hypotheses are expedient,
we use equation §2.3) to compute five shells (the geometric characteristics are
igiven in table 1) and to compare the resulting quantities with the computed and.
experimental data given by Breslavskiy (ref. 3).

A



TABLE 1. GEOMETRIC CHAR:'CTERISTICS OF THE SHELL.
t | RIa | . | R RIL_/TE )
S:f“ MH | My | p== 12R* | 1 *1 Q:RV 0 (1—p?) Remark:
1 540 [ 125 [ 0.8 | 3,42-10—¢ | 0,232| 0,726, 6750 E=2 2-105:"2
2 540 | 176 | 0.8 | 1,/4-10—6 | 0,324 1.02 4820 p=0.3
3 540 | 200 | 0.8 |1,335-10—¢ | 0.370] 1,16 4240
4 817 | 2060 | 1.4 | 4.07.10—¢ | 0,245] G.770 4220
5 380 | 200 | 0.8 {1,335-10—6 | 0.526] 1.650 4220
TABLE 2.
Shells: Nl a2 N3 N4 uE
n | Py | Pp| Pu| Po| Pp| Pun| P» PB‘ Pu| Po | PB| Pu| Pe| PB| Pu
o | — | = | =] =|=|—=]—=j—|—[408|e2]s50] —|—|—
4 |25 |22 | 280| — | — [ — | — | — | — | 192 |191|198]538]628| 684
5 |- | — | — | 200|248 /254|250 237|259 — | —|— [484]431] 480
6 |438 | 426 | 42| — | — | — | 233 | 225 | 219 | 323 | 300|303 350 |345] 370-
8 |~ | — — {466 ] 391 | 41} | 334 | 307 | 312 | — | — | — |345|368| 361
10 | — | — | — |705|635 640 | 497 | 476 | 485 | — | — | — | 484501 | 500
R|l=]=] =—|=]=]—|718{6MW]|72] — |—=|]=]—|—]|~
- | = | === — 1968|924 90| — |—|—~|—1—|—
B = Breslavshiy 's fermala
) = wperimental dda

our data

Tabie 2 shows the experimental values for the natural frequencies of
oscillation in H2 and theoretical values computed by means of our equations and
by means of the Breslavskiy equations.

Comparing the results of computing the natural frequencies by
means of equation (2.3) with the corresponding values of experimental fregquencies
computed by means of the Breslavskiy equation, we can see that in all those cases
of extension can be neglected compared with the flexural energy,

when tha ener
equation (2.3

gives results wvhich are quite satisfactory.

/154

The order of the

error in equation (2.3) and in the Breslavskiy method is the same, in spite of
the fact that our equations are based on hypotheses which differ from those
usually adopted and which simplify the calculations substantially.



3. Cantilever Shell

In this case the beam function W _(x) will be determined as

W, (x)=i/17[ch—k,,,f—cos k- B, (sin x,x —shkpx)],

(3.1)
shky—sink, = X
M= .y K=—,
where chekpy + cos Ry ’
knl=1875, '4.694, 7.854... (3.2)
Substituting (3.1) into equations (1.1)-(1J2), we obtain
mn EA k4m"l4
ot R (1 P 4
—n?
+2p (1= 1) opyn?+2(1 ._*,)1_"2_"2 ammn’]}.
n EAzR . .
OB R 81 (1= 1) (0, + ) 7+ (3.3)
(1 —n2)?
+2(1=pap, S ]
where Lo, S
m”=6[ W,.W,,dx, 0,,’=§me pdx, (3'1")
_R g m
) ""1'? 122 °
Substituting (3.1) into (1.13), we find
ma_ 1 12
-m=0’"‘R[ 1+‘n—;+°..-n—‘] .
(3.5)

2
= eh=Ra,,, —::T .

We have the Jollowing table of values @ .. and @« . for the first three

values of m (table 3). P P
TABLE 3.
Sump - Gmp
X 1 2 3 “ 1 2 3
m
1 0.880 ] 1,881 1.57 4.69 —T7.466 4.1
—11,66 —-13.29 3.16 - 2.4 2.7
3 . 27,06 —0.97 —46 - - 7.3

By using table 3 we can write the coefficient AT® for m = 1, 2 and 3 /155
in the following manner, if we let R/! = 1| and eliminate the ccnstant m

9
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(1—p)R2
Eh

ntain=1247*+ fn* {12.4"4‘+(1 —np4
T 2";2 [ -—0.?54(1 — u2)+3.29 (l;—z}ﬂ)? ]]

L2 ntali— st it (48400 (1 — 27 +

Eh .
(3.6)
4202 [4(1 —mp 2260 = ]} :
-“—‘E—h*‘i@’— 1203 = 3800x4 -+ Bt {38001;‘ (1 —n?2 4
+ 242 [13.8(1 —n=)+34‘-‘“n+’)’]} :
b\ = nt -t n2 1 4.69+2, (3.7)

nban=n*-+ n24 32,0472,
nbin=n'-+ n2+ 77382,

We can make use of equation (2.2) to compute the frequencies of natural
oscillations, 1.e., instead of n systems from m equations we can consider only
one gguation consisting of the diagon-l merber of the matrix. The coupling which

exists between forms W and W . is so small that it can be neglected.
m,n m+1l, n

As an example we consider the spectrum of frequencies for shell number 3
see (table 1), which confirms there is an absence of coupling between modes
wln and W2n' For comparison purposes table L4 shows the spectrum of frequencies

in Hz for hinged shells, cantilever shells and rigidly fixed shells as well as
for free shells.

TABIE 4. EFFECT OF THE NATURE OF SHELL SUPPORT ON THE SPECTRUM
OF NATURAL OSCILIATION FREQUENCIES.

m 5 6 7 10 12 14
2.Hinged 259 29 | 312 a5 | 702 980
3.Cantilever 143 176 304 485 | 702 980
¢.Rigid 525 388 378 515 721 990
5.Free 111 172 297 485 700 980

It follows from table 4 that the frequencies of natural oscillations for a
cantilever shell are below the corresponding frequencies for a hinged shell when
the values of n are sgmall. As n increases and when it is permissible to neglect
the effect of the potential energy of extension, the natural frequencies of ,
oscillatiorgno longer depend on the manner in which the shell &s supported. |

10 ——
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L. A Shell Which is Rigidly Fixed Along the Ends

In this case t.e function Wm(x) represents a natural osci‘llation /156

function for ¢ beam rigidly fixed along the edges

W,,(x)=—yl—i— [sinkpx — shkx + B, (cos kpx —ch k,x)], (L.1)
where
B =__chk,.—cosk,,,
n Chbpy +sinky (k.2)
here
- X - . . (2m 4
x—-l—‘, ku'—4*73' 7.853,...—'—2—. ()4.5)

The value km is the root of the characteristic equation ch km cos km = 1.

The coefficients (B.h) amm and - can be written in the following manner accord-
2

ing to (4.1) and (Lk.2)
Rom 28 ) K, 28
=21l m ). —_—_m Lm )
Omm =" ( km Omm 2 1+ km ) (4.4)
The coefficients of the characteristic equations (l.lO) have the form

e R .en‘{ Kot (1 —n2p 4

+ 202 (14222) [ —p (1 =)+ —p) ‘—‘:,—’ﬁ]}

L= g 1= o

+2(1—p)a,, (l.;n:}i]’ (k.5)

i b::=n‘+n?+k2.-q’( H_?_Pi)
] R
Ly L E

k
In spite of the presence of supplementary terms the coupling between the
functions Wmn(x), L 1, n
(2.2) to compute the freguencies i.e.,

(x) is so small that in practice we can use expression

»._:i
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ot s (st (1 — e - 24 (14222 )

m 7

x [—uit—m + a—w ]

Pn=A? o
n4+n2+k?"q2(1+-3k3—’1) ' (4.6)
2 E
(1—w)Re *

As a numerical example we consjder the spectrum of natural frequencies of
shell No. 3 (table 1).

The results obtained are showr in table 4. As was to be expected in this
case, the values of the natural frequcncies are higher than in the first two
cases, and it is only when n = 1k that the natural frequencies cease to depend
on the method uced to support the shell.

5. Free Shell
A floating or free shell is a shell such that M=Q =T = 0 at 1151
both ends.

The bean function is written in the following form

W, (x)=7!T [sh k% - sin kX — By, (chkpx -+cos kX)), (5.1)
where
__Chky—cosky
"—chk,,,+sink,,, ’ (5.2)
ky=0; ky=4.73; k=185 (5.3)

The characteristic peculiarity of such a shell is the occurrence of trans-
verse waves and the absence of longitudinal waves.

The general approximation equation will always be (L.6), specifically

Kot it (kb (1 — w0+ 24t [~ (L= ) X

p=ar x(1+5=) ra-ntGE (4 )} (5.4)
' w146 %) -
: »n



For k, = O, equation (5.4) is transformed into the well known equation
for a ring
2 A2 pad(1—n?)2
- n4 + n?

the spectrum of frequencies in Hz 1s shown in table L,

6. Combined Oscillations of Two Cylindrical Shells

Let us consider the osci_llations of two cylindrical shells of the same
radius R, which are rigidly attached to each other along the section x = 11

(figure 2). We shall aswure that shell ends x z 0 and x = i, are arbitrarily

supported. We shall solve the problem by the energy method by assuming that the
natural oscillations of the shell can be approximated by series of the following

form .
w (x)—_—zz An W, (x)cos nb,

v (x)=22 Ay m5)_gnps,
n

u(x)=22 AL, —‘%— Rcos nb.

In regard to the functions Wm(\:), v, (x) and U (x), they may be selected in

(6.1)

such a way that the conditions under which the shells are joined along the bound-
ary x = 11 are satisfied, i.e.,
Wml (ll): sz (11),
le ()= sz (),
Uml (ll)=Um (11),
Wi (1) =W s (4,),
Mm (ll)=Mm (11).
Qi (L) =Qpma (1)
The subscript "1" refers to the shell 0 < x < !, and the subscript _@
"2" refers to the shell 1, S x S | '

(6.2)

20

Let us assume that the function Wm(x) represents a beam function of the com-

-posite beam whose rigidlty along the region O-tl will be EJl, and along the region

t,-1, 1t will be EJp.

13
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If at the bd‘ﬁdary where the two shells are Joined we have Wl = Wy,

Wi=W,, EJWi=EJ,W3,
EJIW; = E.IQW; ’

then condition (6.2) is satisfied automatically for V and U as a result of equa-
tion (1.5) end is approximately satisfied for M and Q.

If Wml(x) is the beam function for the first shell of the form (1.7) whose 2
constants are determined from conditions at the end x = 0, and Wme(x) is a beam

function for the second beam whose two constants are determined from conditions
at the end » =12, then in place of equations (6.2) we can write the following
system of equations
CIW i+ CoW pa— Ci'W 1 - Clwl,
CIWm+CiW my=Ci'W, )+ Clw 1},
Sy (CiMm 4 CiMpa) = J,[CY M 1 CimY),
J, [ClQh 4 CiQhe] =, [CYQY, - cliQlL],

(6.3)

where Wi s W' 12 Mi » @ represent a definite grouping of hyperbolic and trigono-

metric functions which satisfy the conditions at the ends x = U for the first
shell and x = l2 for the second shell. The superscript "I" refers to the first

shell, and the superscript "II" refers to the second.

The characteristic determinant of system (6.3) is written in the form

Wm Wi wi wi,
Wai Wm Wi Wi
Mm  Mha MYy MY, =0 (6.4)
Qh1  Qhe A 2
z
0 7 4
[ 1Y

Figure 2, ' ‘Composite shell,

1y
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In the expanded form equation (6.4) when \=—- (sic) has the form
YAM, Qpa(W, W) 4-v[—a(W, M)IA(W Qu-—r
FAaW’, MuaW, Qy+aW, QuaW’, My+ (6.5)
FAM, Wi AW, Qul+a(W, W) aMQ,=0.
In equation (6.5) A represents the elementary determinant of the following

form
Wi W:nZ

AWW Y= " T
w/ml ‘vmﬂ

(6.6)

Determinants of the form (6.6) may be expressed in terms of the Prager /159
functions (ref. 6), i.e.,

A(ky)==chk,sin k,; -+-sh &, cos k,,,
B(k,)=chk,sink,—shk,sink,,

S (ky)=2shk,sink,,

C(k,)=2chk,cos k,, (6.7)
E(k,)=chk,cosk,+1,

‘D (k,)=chk,cosk,—1.

Functions (6.7) are tabylated 1, and therefore it is not very difficult to
find the roots of equations (6.5). If the rigidity of one of the shells is
substantially greater than the rigidity of another shell, the dominating terms
of the equation will be the coefficients in front of v2 or vO. Consequently in
piace of equation (5.6) we can consider the expression

AM, Q) A(W, W) =0, (6.8)
Equation (6.8) in turn breaks down into the following two
| AM, Q=0 or A(W, W) =0,
i.e., at the section x = ‘l one of the shells may be looked upon as a rigidly

supported shell for which A (W, W') = O, and the other may be looked upon as a
freely supported shell for which A (M, Q) =

Let us rewrite (6.5) in terms of the Prager functions, if the first shell
(at the section x = 0) is supported in a cantilever fashion and the second shell
(at the section x = 1,) is freely supported.

For the first shell we have

W,=C, (cos k% — ch £,%)+C, (sin k,x—sh &,%). (6.9)

lK. Gogenemzer and W. Prager. The Dynamics of Structures (Dinamika 15
soorazq:pniy). ONTI, 19%26.



On the basis of (6.7) and (6:9) we obtain
AW, W)= —2Dkj/l,, AW, My=SE,
a(WM)=2Bki4, A(W'Q)=2A.k14, (6.10)
AWQ=SHI, A (MQ)=2E K8,

In terms of the Prager functions we have the following for the second shell

W=C, [C—;—‘-gcos kX + Asin kyx +ch k,}']+
' (6.11)
+c,[—3cos k,x+‘i"$sm k,x-l-shk,x].

On the basis of (6.11) the elementary determinants can be written in the
form

A (MQ)=2D,-f,:i . AWQ=—styt,
4
AOV'Q)=24, 7, &V M)=2843 (6.12)
3
AW M)= =S, (WW')2E ity
N - 2 -

Substituting (6.10) and (6.12) into (6.5), we obtain the basic /160
equation in the form

8 b B H Y s
¥ = D\Dy—v| 3 22 L2 5%
I it "[’l 2 BIA2+I? B2 +

(6.13)
‘ L .
| —l?- T A182]+ 7:— E‘E.=O.

2

If the rigidity of the basic and of the supported shell is the same, i.e.
Ez ’

V|=l—k;'—=-—’ we obtaln

I Iy . . ’
(D\Dy+EE;) —~ (BiAy+ AyB) — S0, (6.1%)

Subsfituting the values of the functiom D,, Dé! Al, AE’ Bl’ Bé: Sl’ 82,
into (6.14), we obtain

- 14-chk, cos k=0,

In this case we obtain the same values for km as in section 3., i.e., for
the composite shell the function W(:) is determined in the same way as for the
continuous shell.
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In all of the remaining cases equation (6.5) is used tc determine ko and

to determine the approximating functions for each shell, which can be expressed
in terms of one constant Am by means of equation (6.4). The natural frequency

of o§cillations is determined from a system of n equations which has the form
(7.1

TP+ P)— (T + Ty =0,

where PI and P2 are the potential energies of the first and second shell, re-~
'T‘,aj,uL Ta are e kinetx ®pergies of the Fitand second shol, respectively,
spectively,é étermined by means of equations (1.7) and (1.9). As an’example we
e

shall consider the results of testing the freely -suspended, cylindrical shell
reinforced at the ends.

The Geometric Characteristics of the Shell
The basic shell has the following parameters

[=232 am, h=07 xx, R=117 un,

1 —E h? -
—=—=7300, B= =1.52.10-¢,
MR 0.91¢ 7300, ¢ 12R2 !

while the supporting shell has the following parameters
- I1=9 xm, B,=2.08-10"4.

Since the flexural rigidity of the supporting shell is substantially greater
than the rigidity of the basic shell 62 > Bl, we can examine the spectrum of the

composite shell approximately as the combination of the spectrum of & ring and a
rigidly supported shell.

Figure 3 shows the theoretical curves and the experimental points. Qual-
itatively the picture is confirmed experimentally. In regard to the fact that
the frequencies do not coincide, we may explain this by the circumstance that in
this case we cannot limit ourselves to a single term of equation (6.5) and also
by the fact that the true geometry of the shell differs from the one which has

been assumed.

IXI. Conical 8Shell

Cylindrical, conical and toroidal shells represent shells of /162
revolution. We select a system of coordinates in such a way that it coincides

with the principal lines of curvature.
L.
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Figure 3. Theoretical and experimental
frequencies of a reinforced shell. 1,
Variations in natural frequencies of
oscillations of ring; 2, variations in
natural frequencies of rigidly supported
shell.

1. Geometric Parameters and Strain Parameters
We direct the X axis along the generatrix of the cone (£igure 1b); we

designate by o the angle of conicity of the ghell; we designate by Ro and Rl the

respective radii of the small and large base. Obviously the radius of an arbi-
trary angular cross section will be equal to

r=Ro+xsina. (1.1)

The position on the perallel ring is determined by the angle 6. Retaining
the symbols which have been adopted in the theory of shells (ret. 2), we obtain
the following expressions for the geometric parameters

' i
=X, A=1, B=0, B= ;_L=L= ._!_._-,5_2'_1“ 1
¢ P=0, B=r R, Ry 0; Ry r " (1.2)
18



To obtain the strain parameters we represent the displacement along the
normal to the middle surface by w, along the tangent to the circle of radius r

by z and along the generatrix by u. Then we obtain the followling equations for

the strain parameters of elongation

sx=-"i, e.=-1—(-"-"i-+u sina -—'wcosa).
ox r \ g0 (l 3)
o=l By, 0 (2) '
r oo ox\r/’
The parameters of flexural dcformation are
ul=.6—23;'
ox?
1 /0w ov sina ow
= (et 30 cose) 4 (1.4)
_1"{Pw |, dv ow sina
= (0x00 + ox cosa) (oo +'"c°s°) e’

2. Selection of the Approximating Functions

The natural oscillation functions w, v and u are selected as a sum of the
products of two functiwns: one depending on x and the other depending on 6,
specifically

=22 AgaW o (x) cos no,

o=ZZBmV,,(x)slnn0; (2.1)
u =22 CoarlUn(x)COS R,

Amn‘} bmn’ Cmn are arbitrary parameters.

In selecting the approximating functions we follow the method adopted and
verified in the design of the cylindrical shell. 8pecifically we assume that
Wm(x) is a beam function, Xm(x) , Vm(x) and Um(x) as vell as the parameters B

and cmn are not independent quantities, but are associated with Wm(x) and Amn
by means of auxiliary conditions. These conditions are reduced to a situation

where wve assume that .9 =w =0.

Substituting (2.1) into (1.3) we find that for arbitrary values /163
of 6 and ¢'the followigg conditions must be satigfied

BoV u (%) 8+ Colin(%)8ina— A X, cO8a =0,
- [V:u(.:c)--‘—'ﬁ;‘£2 sin a]—ncm‘i'-;iﬂgo. (2.3)

. We obtain the following expression from the firat equation, which is
sccurate to within the longitudinal component,

19



B,V (x)= A;"‘ X uC0sa.

(2.4)

Substituting the value of B Vh(x) into the second equation, we find (2.3)
CoalUn (6)=222 £ cos (X () — XD gin a). (2.5)

Thus, on tbe basis of (2.4) and (2.5) and the assumption that Wh(x) = Xm(x),

ve ot;taiu the following expression for the approximating functions in place of
(2.1

W=V ApyX,co8n,

1;=EZL"_:‘"—X.cosasinn0; (2.6)

4 '
u-—:EZ 22 (Xmr — X o sin @) cosa cos s,

3. Determnatioﬂ of thoée Strain Parameteré Related t_o
Selected Approximating Functions

On the basis of (2.1) the expression for the tensional strain parameters may

be written as
‘1=22 J;.?-X;rcosacosno,

(3.1)
. fz=? '2—';"()(; —--)-(;"—' slnc)l'l';fl cos n 6.

tylindvi |
» y;;'d"
s N
43 >
a5 Too(a=7
. {1
. r“,.l
Q15
'Y
¢ 1 23 4567 89 00n

Figaze 4. Comparison of relative

frequencies p* of toroidal shells

(0'#:*- 1/2, Qs 1/10, h/r = 0001)

with those of cylindrical shell

(r/1L = 1/8 n, h/r = 0.01) for |
m =] and various n. B
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It follows from expression (%.1) that for this selection of the functions

62 becones equal to O only for shells of small conicity or for large values of n.

The parameters of flexural strain will be
1 == N Ay X m0s 18,
- Zm (costa— nt) . Xm (3.2)
% 22'4""[ 2 (cos?a — )+ —Zsina |cos nf, |

’

_ Xm Xmsina | cos2a—n2
=93 4, (Lo s ) &= 10,

L. Computation of the Coefficients in the Equations

We compute the {requencies of the natural os:illations of a conical [16&,
shell by the Ritz methcd. For this purpose we solve a system of equations of
the form (1.10). The diagonal terms of the equations are written in the follow-
ing manner

. )
g Lhe 0820 ‘s\[X?.r’-{—sln’a(x,',,--.’}isina)z+
1—p2 nt r

4-2psinaX .- (X,'..—-i"l slna)] rdx}+E(—lE_’%5)- x (S" lX:+
[}

(L.1)
-l;[%(cos’a—u’)+xT;slna +2px;[£r§'-(cos’a-—n’)+
+—):—"-' slna]-|-2(1 --p)( cos? “"." n? )2( X""' _Lr;‘.‘lf.)z} rdx) .
1
b..—ohf‘-g (W4 n?cos?a) X2+ .2)

+(Xnr — X, sin a2 cos?a] rdx,

The supplementary coefficients of equations (1.10) usually do not become
equa.l to zero, and the functions x, are aelected in such a wvay that the condition

s XX Axe=0(m # p), rather than the condition , ; X.X'rdx-o is satisfied.

Consequently we obtain

e
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Ehx  cos?a S{X;X;rz.*_smza (Xm --)ir'-’-'sln a)X

pn ___
Qmnp= P

. X L ’ X
X(Xp —'—;5 slua)—l‘P [X.;.(X,—-—r-&slna){-
o ' X, Efdn
-I-X,,(X,,. —'—r-"i-slna)] }rdx+ Sa—a X g

XS .,.X,,+[x"(c°52“ n2)+£_slna]x h3)

X
x[—)i:- (cos? a —n?)+ -risma]-i-
e

+ 3 Xm [if—:— (cos? a-—n’)+£’€ slna]-}- px;x

. ) {cota—n2y2

X
X [i!-(cos"a——n’)-}-—-!'slna] +2(1—p —X
r, r n

x(f‘_;,.__ X.slna)(_{:p___ X,slna) rdx,
r r r re

!
b,.,.— oh ;’-‘; y [(n*-n?cos?a) X o X -} cos?a X
0

(k.4)
X (X mf —X o sin a) (X ,r = X ,sin a)] r dx.
5. A Shell With Hinged Edges
Let us consider a simple computational example when the edges of Z165
the shell are hinged. In this case we assume that
’ mrx
X -sln—;—-—slnlz,x, (5.1)

In this case it is obvious that the necessary boundary conditions are satisfiea
at the edges of the shell, i.e.,

w;-'O. M‘b.: (5-2)
X
(the second condition (5.2) with an accuracy up to M -‘!slna

Before beginning the computation of coefficients (4.1)- ( 4.4), we introduce
the following designations
R,=RitR _Ri—R (5.3)

2 0 R A
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Part of the integrals is not obtained in a closed form. Therefore, by ex-
panding the function under the integral sign in a series and integrating term by
term, we obtain the required values of the integrals. To simplify we designate

ycos%mxdx I
5: o
0 (5.4)
1
X5 l
\S—ﬁ—dx E{ol‘z’
; )
vhere | Lo=1+2(—>-)"lu (5.5)
_—Z)J(l_H q,), (5.6)
'L:=1+Po"+2011‘“. | (5.7)
=1
- (2,":)20 (— 1)n+l
L ‘;;: ot 2a+i+2 ° (5.8)
(g @™ (a1 1 A@e—1) (5.9)
Po g( R [ s el
QY+ @m) n@a—1) (5.10)
P Z( Iy ont  n4i+4+2°

where m is the number of waves in the shell in the longitudinal direction. /166
From (5.4)-(5.10) and the table of elementary integrals we obtain

1 — u?
nt —-—————RoR:"R( = u a::=cos’a[kfnR'oR¢p a+P+0 +1;2+1 +
cp

+0,78R Ry sin? a+- Ly sin* a] +fn? {MRIR ., + Ly (cos?a—
—ndp ( 1 +2(ln——2_£) sin? a)+ BR} [[l-"—(lpi'—l-) [sin?a-}-

(5.11)
i +2(l—p)(-f-"-'f,f‘—‘——"’-)’—zp(costa—uz)]q-L,[s1n=a+
| +2(14+p)(cos?a—n?)—2(1 —p) 22’.’.“_:’1’-)’]] (5.12)
‘,'u';:p .m-r-{u‘-]-cos’a[n’-l— m2a+k’R’_‘_'t_’:E.L]
23
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We neglect the coefficients agz‘and big. In the first approximation the

frequency of the natural oscillations of a conical shell may be determined by
setting the diagonal terms equal to zero, i.e.,

amn
Pim= - (5.13)

bran

For large values of n and for a large conicity, this equation will not be
valid, because in a conical shell there is always a coupling between the oscil-

lation modes w and w .
m m+ 1

Therefore, it is necessary to compute pi from the determinant of the followe
'Ihg form: '
ot Aoz antht—plogitr |
a;:.i-nl. "—-p'fb::“,} ngm+in__ prom+in T (5.14)

m+1, n m+1,n

where the expression for size and diagonal coefficients is given by equations

(b.1)-(k.4).

6. RNumerical Example

Ye. Breslavskiy tested and computed two conical shells which were hinge-
supported at the ends.

Thetr geometric characteristics are shown in table 5.

We compute the frequencies for the casem =1, n =2, 4, 6 and 8, i.e.,
for a single longitudinal sewmiwave and for 2, 4, 6.and 8 waves in the circum-
ferential direction.

We carry out the computation by means of equation (5.13). From equation
(5.4) we compute the coefficients associated withthe conicity of the shell: L _,

Iy Ty ’

For the shells under consideration, angle o is small. Therefore [161
we can neglect the quantities sina o and sinh @ in expressions aﬁﬁ and b:g and
let c082 a= 1. Then the approximate equation for p2 will be

Phe= (R ARIR, (1 +-A+1212) Bt [RIR., +
+L(—wP 4 20RY — ) (AR ()4

nt—1

1 (2= S st AR, ;
2k - A ]
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TABLE 5. GEOMETRIC CHARACTERISTICS OF THE SHELL.

s

N n2

of Ro Ry AR { sina - | cosa k ’1'2';%; =f
shell

1 10 17.5 7.5
2 12,5 15 2.5

0,125 0,992  1-10—2 | 8,35-10—6
0.0204 0,999 | 1.10~2 | 5,36-10-6

&

contmued

]
N ’ o E (13) x \2

shell
I
1 13.75] 0.75 11.7 5,3-105 0.72.104 0.275 0.5591
2 13.751 0.2 13,10 5.3-106 0.641-104 0,211 0.198
cP = ave
where
h3
B_ 12R‘2) )

and the frequency of natural oscillations in Hz will be

p= £1_ E .
2= }/Roch 1 — pe

For purposes of comparison table 6 presents the computed and experimental
data.

In addition to our computed quantities 12 and p2, which are based [168

on the assumption that the transverse cross section is not elongated and that
shear is absent in the middle surface for the cone, we present the computational
data of Breslavskiy which take the deformation of the middle surface completely
into account.

It follows from table 6 that as the conicity increases, the natural frequency
of oscillations of the shells also increases. As far as the accuracy of our and
Breslavskiy theoretical methods is concerned, it should be assumed that they are
the same. )

The advantage of our methods is reduced to the possibility of obtaining

simple design equations. As the value of n increases, it obvious that the natural
oscillations must be determined from equation (5.1k).

25
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TABLE 6.

Shall N 1 a=7°10 Shell N 2 a=1°40
thearetical . {\r\e.orq,'t(ca\
n P Pe
p, ¢ OPQ pﬂ CDPY\Q
2 — -_ 276 311 332
3 310 326 360 200 192 192
4 285 254 270 244 219 222
6 456 47 455 410 454 450
p9 = experimental frequencies
pB = Breslavskiy data

ITI. Toroidal Shell

A shell of this type is formed by the rotation of a ring (figure lc) of
radius r with respect to the z axis. We designate the distance between the cen-
ter of the ring and the axis by RO. Since the literature contains no data,

either theoretical or experimental, on the frequency spectrum of natural oscil-
lations, in practical calculations the torus is sometimes replaced by a cx%indﬁi:
ca ust%lk'yyppap%ﬁpgﬁp ya\a'ggq&}rto the average perimeter of the torus¥" 'fhe
£orus réprgsen £ a close surface, %nd’ therefore the rigidity of such a shell
substantially exceeds the rigidity of a cylindrical shell. The high rigidity of
a torus rompared with that of the cylinder has its effect not only on the absolute
value of the frequencies, but alsn on the nature of their disvribution. In other
words, if the lower frequencygpf natural osciilations of a cylindrical shell is
associated with a minimum"8} waves in the longitudinal direction, then this con-
dition is not observed fo? the torus. The lower frequency is associated not only
with the geometric characteristics, but also with a certain number of waves in

directions 6.and -

1. Geometric Parameters and Strain Parameters

an
The radius oanrbitrary angular cross section will be

R=Ry+rcosp=R,(1+acose). (1.1)

The position of the point on the surface of the torus is determined by a
system of orthogonal curvilinear coordinates 6 and f§.

Using the symbols presented in reference 2, the geometric parameters of the
torus will be :

26 -
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a=0; A=R,(1+acosg); P=q; B=r;

1 _cosg ., 1 1, (1.2)

Ry A ’ Ry r’ Ry 2

To obtain the strain parameters we let

w be the displacement along the normal to the middle surface;

v be the displacement along the tangential coordinate 6 = const.
u be the displacement along the tangential coordinate ¢ = const.

From the general equations of the theory of shells the strain parameters
for elongation will be

eg-_—_%(——--'vsin'? 'wcoscp)
(1.3)
1 [/ ov A 0 /u 1 ov
=—l——W]|, 0 =— — [ — —_
* r(()? )"’ rd?(A)-l—A 2
The flexural parameters will be as follows /169
_1[1 0 o _sing (0w
=7 [.4 oe(oe +uc°sq’) p (a_?+'")]’
1 0 (ow
== e——— —— ——— Ld] ’
x, ’20?(0?—'-) (1.4)
1 0 [odw sineg ow
Te=—40¢Q | — — —_—
rd [60 (07 +'v)+ 1+ acose (60 +uc0s<p)+
du
4‘7;‘C03?

Equations ave real not only for a closed torus but fov any fovoidal surface.,
2. Selection of the Approximating Functions
In determining the frequencies of natural oscillations of a toroidal shell
as well as in computing cylindrical and con%_lal shells we utilize the Ritz method.
The success of this method is determined to large extent by the selection of the

approximation functions. It is expedient to determine the displacments in the
form of a double series of fucntions, i.e.,

=S LW ()W, (o),
=3 MuV OV, (), (2.1)
b= 22 N..U.(O)U. (‘P)-

e7



Let us assume that wm(e) = cos m & determines the oscillations of an ele-
mentary ring of radius R; Wn (cp) = 8ln n ¢ determines the oscillations of an

elementary ring of radius r; m and n are whole numbers. Imposing the additional
conditions €p = w = O on the displacementsu, v and w, we obtain

= 22 L,,,,,cos ml sin mp.,

0=22meosm0“—'n-'-'3, (2.2)
u=—a(l +acos<p)22 Ly, 5inm8 —:2- U,

where

Ur=n S cos npdyp|(1+ a cos p).

We determine the strain parameters for the selected functions

w2 e

+ (n—l)sin(n+1)9+(n+ 1)sin(n—1)¢ ]
2n (14 acosy) ?

(2.3)
,=w=0,

_ Lgs cOs mb ,pu_z . \
= ZZR (l+acosy)2[ n? U,'cos v+ ‘

n2—1 o Sinne ]
— am* ————teee
+ n cos npcos ¢+ 1+ acosey

n=—P L, 2 (w2 Dsinng, » (2.4)

- _ L] sin mo nt—1
= ZZL"Rr(l+acosQ)m[ n cos np-+-

—l—c(l +n3)cos(n—1)p+(1—n) cos(n+ 1)
2n2(1 + acosy) ’

3. The Formulation of the Characteristic Equation

Having determined the strain parameters and having formulated the [119
expressiongfor the potential P and kinetic energy T, we differentiate P and T
with respect to Lmn and find the coefficients of the characteristic equations.

Since the system of functions which depend on & is orthogonal, we obtain a system
of the following form rather than a single characteristic determinant
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dmn— x2pmn  gmn  _ copmn

mn+1 mn41.
dmati yapmasl  gmati_ x’b::j:} =0, (3.1)
vhere & 82g 0 (1) + pa’> (II),
=1 o paal—?
o B=pr—" . (3.2)
After simple algebraic transformations, the coefficients a—. (I), aﬁ (11),
bﬁ may be writter in the'followingrmanner
ﬂ‘b3n=n‘+n’-l-a’ jU,, (?)(1+acos¢)*dy. (3.3)

The last integral is also taken in series for small @ and large n (n > L)
(this term may be neglected)

. . .
u‘a::(l)zj[m’v,'.a+-f- (n—1)sin(n+1)p+(n+1)sin(n—1)¢ rx
J 2 1+acosy

X (14-acos ¢) de,
o=

‘amm (11)=n? I 2 -
ntamn(I=n 5{(:1 1) sin2 np4- (T acosyp X

(3.1)
g M2 4 e n2—1 sin ne
X[a n Urcose l+acoscp]1+
(n2—1)sinng [ o m2 ;.0
+2a l1+acose [u n? Uncosp+
sinny
l+acosp]+
_ a2m? n?—1 (/]
/ +2(‘ p')(l+a:osqﬂ)[ n cosn?+—272.x-
7 oo (140 cos(n—1) ¢ + (1 — a2 1
X llacosv it ”J}(l-l—acos‘cp)d?. (3‘5)

The integration of coefficients a:: is assotéiated with substantial com- [111

putational difficulty. The integrals are not determined in closed form and
Q;};gy must be computed by means of series, Since o is a small quantity,
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0.1 < o< 0.5 we may retain only the terms ao and a2 in coefficients aﬁg (1) and
a:nn (11) y specifically

malh(l) mmta? L+ L)+amim? S, 4

+2- [Botwr+1)+ B, ""‘] (3.6)
Y R e L 2)4-2m (w2 —1) X
X Bofp+(1 =) ""‘)]

(3.7)

However, we cannot neglect the quantity aaa (1) compared with the quantity

B*nh in the diagonal terms, because the order of magnitude for the series of the
values n and « is the same. In the side terms we retain only the quantities

2m + 1
x .
mn

The parameters L, L, A, B, and B, in equations (3.6) and (3.7) have the
following expressions

Lo=:§ dl’d?. 1-1=2$ U~ cos gde,

-3 (3%

@ \2+1 2+ 21 (3.8)
An-—-—?}. 2 arpu’
2421 (2 + 91
8.=23 (3] wrmui’

For convenience of computations we present the walues of L0 and Ll in the
table

¢ | n 5 6 8 9 10
1,2 { Lo 3.‘7 3.11 3.% 3.“ 3:0‘
! L‘ —3.” ""3.“ N —2'“ _2.” -2.“ C
1.60 1,50 1,58 1.88 1,88
13 {2 A% 0 B A% | e [ e Hj



To evaluate the frequencies of natural oscillations we .tilize the follow-
ing approximate equation

1 a2l (1) + fnda™ (1)

E
p2<1—p2? n4+n2 ! (3'9)
which has the foilowing expanded form 1112

Pt —L[Bo 5:—+ p2n4(n2—-l)+a4m4(Lo+aL1)+a’m’nu,]. (3.10)

1—w2 o2 n2(n2 + 1)

For small values of o the frequency of natural oscillations is practically inde-
pendent of m, which gives the number of waves along the radius of the large
cirele.

For small values of a, i.e., if a?/e < Bnh, the frequency is computed by
means of the equation for an infinitely long cylindrical shell. Figure 4 shows
the variation in the relative frequencies of natural oscillations p~ of toroidal
shells with parameters a=l/h, a = 1/10 and h/r = 0.01 and of a cylindrical shell

for which r/t = B¥F,~h/r = 0.01 (the quantities,p l:gfgo are compared). As «

decreases in value, the frequencies of the cylindrical and toroidal shells will
approach each other. For small values of n the difference in the frequencies

will be substantial due,*to the difference in the coefficients s (I). It is

known that the principal role in the flexural oscillations of thin-walled shells
isytaken into account as the tensional energy, as well as the flexural energy.
This differs from ‘he case of the cylinder where the tensional energy is deter-
mined only by the longitudinal displacement u. The equations for the cylindrical
shell may be used only when n > 10.

layed by the displacement w, which for a torus is
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